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Abstract
Ethereum transitioned from Proof-of-Work consensus to

Proof-of-Stake (PoS) consensus in September 2022. While
this upgrade brings significant improvements (e.g., lower en-
ergy costs and higher throughput), it also introduces new vul-
nerabilities. One notable example is the so-called malicious
reorganization attack. Malicious reorganization denotes an
attack in which the Byzantine faulty validators intentionally
manipulate the canonical chain so the blocks by honest val-
idators are discarded. By doing so, the faulty validators can
gain benefits such as higher rewards, lower chain quality, or
even posing a liveness threat to the system.

In this work, we show that the majority of the known attacks
on Ethereum PoS are some form of reorganization attacks.
In practice, most of these attacks can be launched even if the
network is synchronous (there exists a known upper bound for
message transmission and processing). Different from exist-
ing studies that mitigate the attacks in an ad-hoc way, we take
a systematic approach and provide an elegant yet efficient
solution to reorganization attacks. Our solution is provably se-
cure such that no reorganization attacks can be launched in a
synchronous network. In a partially synchronous network, our
approach achieves the conventional safety and liveness prop-
erties of the consensus protocol. Our evaluation results show
that our solution is resilient to five types of reorganization
attacks and also highly efficient.

1 Introduction

Ethereum, a leading blockchain platform, transitioned to
Ethereum 2.0 in September 2022. It now uses a Proof-of-
Stake (PoS) consensus mechanism called Gasper [6]. Gasper
integrates two protocols: Casper the Friendly Finality Gadget
(FFG) [5], a protocol ensuring the finality of transactions; a
modified version of the Greedy Heaviest-Observed Sub-Tree
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(HLMD GHOST) for selecting the canonical chain. Namely, ev-
ery honest validator in the system only proposes new blocks
that extend its canonical chain and votes for blocks on its
canonical chain. Eventually, one chain will be finalized ac-
cording to FFG, so the system achieves safety (i.e., no double
spending) and liveness (i.e., transactions submitted to the
system are eventually finalized).

Malicious reorganization attack (reorg attack for short) [27,
28], denotes an attack in which the proposed blocks by honest
validators are re-organized. In particular, Byzantine validators
manipulate the canonical chain such that blocks by honest
validators will be considered invalid and eventually discarded
(i.e., orphaned). This concept is also closely related to the no-
tion of selfish mining, first known as an attack on Bitcoin [19].
Namely, selfish mining is one kind of reorganization attack.
We illustrate the reorg attack by Neuder et al. in Figure 1.
Consider that block b0 is proposed by an honest validator. In
the next slot1, a block b1 is proposed by a Byzantine valida-
tor vi and all Byzantine validators vote for b1. Block b1 is
released when the next validator proposes a block b2 extend-
ing b0. After b1 is released, block b1 becomes the canonical
chain as the chain led by b1 is heavier (with more votes and
a higher weight). The block b2 is then considered orphaned
and discarded. Reorganization attacks typically do not aim to
attack the safety or liveness of the system. Instead, Byzantine
validators may gain additional benefits such as higher rewards
than honest validators.

b0b0

b1b1

b2b2

b1b1

Time

withheld block
delayed block

normal block

orphaned block

delay a block
vote for a block

Figure 1: The reorg attack found by Neuder et al. [28].

1Each slot lasts for a fixed period of time and only one randomly selected
validator is allowed to propose a block.



attack type scheme
timing

assumption
mitigation

solution limitation

changing
ex-ante reorg [28, 33, 34]

synchrony
proposer boosting v1 [31] cause sandwich reorg

block weight
balancing attack [25, 26, 34]

sandwich reorg [12] proposer boosting v2 [38]⋆ cannot fully prevent

filtering

bouncing attack [24, 29] partial synchrony† safe-slots [2] cannot fully prevent

block tree

unrealized justification reorg [1]

synchrony
Capella upgrade [20] cause staircase attack

justification withholding reorg [30, 32]

staircase attack [41] Deneb upgrade [9] cannot fully prevent

⋆ Proposer boosting parameter decreases from 0.7 to 0.4.
† The attack is conducted after the network is synchronous.

Table 1: Comparison of known malicious reorganization attacks against Ethereum PoS and their mitigation solutions by Ethereum.

We find that the majority of known effective attacks on
Ethereum PoS belong to reorganization attacks, although they
emphasize different types of adversarial strategies. According
to how the canonical chain is manipulated by the adversary,
we classify known attacks into two categories: attacks from
changing block weight and attacks from filtering block tree.
The attacks from changing block weight refer to the strategy
where Byzantine validators modify the weight (informally,
block weight is related to the number of votes for the block)
of their proposed blocks to make their fork eventually become
the canonical chain. The reorg attack [28] shown above is one
example. Meanwhile, the attacks from filtering block tree do
not change the block weight. Instead, the attacks make honest
validators prune the canonical chain. This is often achieved
by changing the state of honest validators. We summarize
these malicious reorganization attacks in Table 1.

In response to the vulnerabilities, mitigation approaches
are proposed from both academia and industry. They are often
designed in an ad-hoc way, addressing one issue at a time.
Without formal proof, the mitigation approaches may create
new issues. For instance, to mitigate the ex-ante reorg attack
and balancing attack [25], Ethereum implements the proposer
boosting mechanism [4, 31]. By temporarily adjusting the
weight of the block in the current slot, the forks created by the
adversary will not become the canonical chain. However, the
mitigation approach introduces new issues. A so-called sand-
wich reorg attack [12] was later proposed, exploiting proposer
boosting to create a reorg attack. The sandwich reorg attack
is a variant of ex-ante reorg attacks where two Byzantine
proposers collude to make the blocks by honest validators or-
phaned. Additionally, many known mitigation solutions lack
formal analysis or introduce additional assumptions, e.g., by
assuming that the ratio of stake controlled by the adversary is
no more than 20% [12].

Therefore, an open research question is:

Does there exist a provably secure and efficient solution
that is resilient to reorg attacks in Ethereum PoS?

What can be solved and what cannot be solved? Ethereum
PoS assumes a partially synchronous network [18], i.e., the
network might be temporarily asynchronous (there does not
exist an upper bound on message transmission and process-
ing) but after an unknown Global Stabilization Time (GST),
the network becomes synchronous (there exists a known up-
per bound ∆). When the network is temporarily asynchronous,
the reorg attack can not be solved. To see why, consider
the example shown in Figure 1. One can never differentiate
whether vi is slow or faulty so it is unavoidable that the chain
led by b1 becomes the canonical chain when the network is
asynchronous2. Accordingly, it is only possible to provide
a provably secure solution that prevents reorg attacks in a
synchronous network. Our solution achieves reorg-resilience
only during periods of network synchrony. We argue that
studying a reorg-resilient solution in a synchronous network
is already valuable for two reasons (cf. Section 5). First, most
known reorg attacks can be launched even if the network is
synchronous, as summarized in Table 1. Second, it is likely
that most of the time, the network is synchronous. According
to the statistics of Ethereum, more than 99% of the blocks
are received on time3. Therefore, we study a provably secure
reorg-resilient solution in a synchronous network. When the
network is partially synchronous, our approach achieves the
standard safety and liveness properties for Byzantine fault-
tolerant consensus protocol, which are even stronger than the
vanilla Ethereum PoS protocol. Namely, the vanilla Ethereum
PoS protocol achieves safety, plausible liveness, and proba-
bilistic liveness [5] and the liveness guarantees are weaker
than the conventional liveness notion.

Our approach. We propose a mechanism called available
attestation (AA). AA is inspired by the concept of weak

2In the asynchronous network, there exists a network scheduler (i.e., the
adversary) that can manipulate the delay of the messages, even between hon-
est validators. However, the messages from an honest sender will eventually
be received by an honest receiver.

3Date source (accessed in Aug 2024): https://explorer.rated.n
etwork/network.
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certificate in conventional Byzantine fault-tolerant proto-
cols [17, 21]. Namely, in a group of validators among which
at most f is Byzantine faulty, a weak certificate consists of
f + 1 votes (i.e., attestations in the notation by Ethereum),
proving that at least one honest validator has voted for some
block so the block is available. We borrow this concept to
Ethereum PoS and define blocks with at least one-third votes
as stable blocks. This guarantees that each stable block is
received by at least honest validators. One-third is the mini-
mum number that can achieve the goal. We modify the HLMD
GHOST rules such that validators prioritize their votes to the
chain with the most number of stable blocks. Informally, this
allows one to identify the longest chain already observed by
some honest validators. In a synchronous network, the chain
is likely the chain observed by all validators! Accordingly, re-
org attacks can be fully prevented when the network becomes
synchronous (i.e., after GST). We provide a formal proof of
our protocol. Additionally, our solution does not introduce
any new attack surface. This is because we do not add any
new message types or modify the workflow of the protocol.

One interesting fact is that our solution that requires valida-
tors to keep track of one-third of attestations is aligned with
the honest reorg [37] mechanism currently implemented by
Ethereum. Honest reorg is designed to prevent the proposer
from delaying its block. In particular, each block needs to
receive at least 20% attestations to be considered valid. Our
solution requires this threshold to be at least 33.3%. Note
that honest reorg does not mitigate malicious reorganizations
while our approach is reorg resilient.

We implement our AA mechanism using Prysm, one of the
most popular Ethereum PoS implementations. Our evaluation
results show that our solution introduces negligible overhead
to the latency and throughput of Ethereum PoS. We also
implement a set of known reorg attacks and show that our
solution can successfully defend all these attacks in practice,
despite the fact that our solution is provably secure.

Summary of our contributions. We summarize our main
contributions as follows.

• We provide a classification of reorg attacks and classify
known attacks into two types: attacks based on changing
block weight (Attack-I) and attacks based on filtering block
tree (Attack-II). We show that almost all known attacks
against Ethereum PoS belong to reorg attacks (Section 4).
• We introduce available attestation (AA), a provably se-

cure mechanism that is resilient to any reorg attacks for
Ethereum PoS when the network is synchronous. To
fully instantiate the AA mechanism, our solution slightly
modifies the data structure of the blocks, introduces a
communication-efficient forwarding rule, and replaces the
HLMD GHOST rule with the longest chain rule (Section 6).
• We present a rigorous security analysis of our modified

protocol, demonstrating that it is resilient to reorganizations
under synchronous networks and maintains both safety and

liveness in partially synchronous networks (Section 7).
• We implement our solution using the Prysm codebase. Our

evaluation results on up to 16,384 validators show that
our solution can effectively mitigate all known reorg at-
tacks. Meanwhile, our solution introduces low overhead to
the performance of the system, achieving almost identical
throughput and latency as the vanilla protocol (Section 8).

2 Related Work

Mitigation by Ethereum. We review the mitigation solutions
for attacks on Ethereum. This part can be viewed as a detailed
discussion for Table 1. Readers who are not familiar with the
notions of Ethereum and the attacks against Ethereum may
refer to Section 3 and Section 4 for details.
Proposer boosting [4,31,38] is designed to mitigate balancing
attacks [25] and ex-ante reorg attacks. Proposal boosting (v1)
assigns a temporary additional weight (70% of the total stake
of the current committee) for the block proposed in the current
slot. This will make the block in the current epoch have a
higher weight and not be orphaned. The mitigation has some
limitations. First, it only mitigates the balancing attack and
ex-ante reorg attack. Second, it causes a new reorg attack
called sandwich reorg attack [12]. Accordingly, the additional
weight is adjusted to 40% (denoted as proposal boosting v2).
Safe-slots [2] is a mitigation solution for the bouncing at-
tacks [24]. The bouncing attack is a liveness attack against
Ethereum PoS (see Section 4 for details). Safe-slots defines a
new parameter called SAFE_SLOTS_TO_UPDATE_JUSTIFIED.
It only allows validators to update the last justified checkpoint
in the first SAFE_SLOTS_TO_UPDATE_JUSTIFIED slots of an
epoch. However, it was later found that bouncing attacks can
still be conducted [29].
Capella upgrade [20] consists of the mitigation for unrealized
justification reorg attacks [1] and justification withholding
reorg attacks [30]. It modifies the filtering rule in fork choice
HLMD GHOST: any chain that includes enough attestations
in the previous epoch will not be pruned in the fork choice.
The mitigation suffers from a reorg attack called staircase
attack [41].
Deneb upgrade [9] consists of the mitigation solution for
staircase attacks. It further modifies the filtering rule: a chain
will not be filtered if the difference between the epoch of its
newest justified checkpoint and the current epoch is no more
than two epochs. The mitigation can not fully prevent the
staircase attacks. It only decreases the probability of repeating
staircase attacks to mitigate the effect of the attack.

Additional mitigation solutions to the reorganization
attacks of Ethereum. The concept of reorg resilience
was first mentioned in Goldfish [10]. Goldfish provides
a reorg-resilient solution that is provably secure in the
synchronous network. The Recent Latest Message Driven
GHOST (RLMD-GHOST) protocol [13] relaxes the timing



assumption to the partially synchronous network. However,
the solution requires all validators to vote in every slot, mak-
ing it not directly compatible with the Ethereum PoS work-
flow. Meanwhile, the Single Slot Finality protocol [14] and
the 3-Slot-Finality protocol [11] both provide reorg-resilient
solutions for PoS but require all validators to vote. In contrast,
our solution preserves the workflow of Ethereum and does
not require all validators to vote. We also make the same
assumption of the partially synchronous network.
Weak quorum certificates (QC). Weak QC (also called a
weak certificate) denotes votes from f + 1 validators. The
concept originates from conventional Byzantine fault-tolerant
(BFT) protocols [8, 17, 21]. Informally, as f is the maximum
number of Byzantine validators, a weak QC proves that “some-
thing right has already been done”. In Star [17] and Auto-
bahn [21], each validator proposes a block and collects weak
QC. After a weak QC is formed, the QC proves that some
honest validator has previously received the proposal so the
proposal is available. As mentioned in the introduction, our
available attestation mechanism is motivated by the weak
certificate. However, our approach is fundamentally different
from conventional BFT protocols. Unlike conventional BFT
protocols that often rely on the transferability of the certificate
to prove something, our approach does not require validators
to send the certificates to other validators.
Other malicious reorganization attacks. Malicious reorga-
nization attacks are found in protocols beyond Ethereum PoS.
Selfish mining [19] is arguably the first malicious reorgani-
zation attack. In the attack, the adversary withholds a chain
and eventually the chain from honest miners is re-organized.
Selfish mining is found in Proof-of-Stake (PoS) protocols as
well [3, 27]. For instance, Brown-Cohen et al. demonstrate
that the “longest-chain” variants of PoS protocols are vulnera-
ble to malicious reorg attacks [3]. However, it was mentioned
that the result does not cover Ethereum PoS.

3 Review of Ethereum Proof-of-Stake Protocol

We review the Gasper protocol used by Ethereum 2.0. Our no-
tations largely follow from the Ethereum whitepaper, official
document, and previous works [6, 36, 41].

3.1 Model and Notations

Network assumption. Ethereum PoS assumes that the net-
work is partially synchronous [18]. In particular, there exists
an unknown Global Stabilization Time (GST). After GST,
the network is synchronous, i.e., there exists a known upper
bound ∆ for message transmission and processing.
Validator. Any node that participates in the consensus proto-
col is a validator. To become a validator, each user needs to
first deposit some tokens to join the system. Without loss of
generality, we assume that the total number of validators n is

fixed, denoted as {v1,v2, · · · ,vn}. Validators are either honest
or Byzantine. The Byzantine validators can deviate from the
specification protocol arbitrarily. Ethereum assumes that the
weight of each validator’s vote is related to the account bal-
ance (i.e., the stake). To simplify our description, we assume
each validator’s stake is normalized to one unit [6]. Under
this assumption, let f be the number of faulty validators, we
have f < n/3.

Time. Time is divided into epochs and each epoch includes 32
slots. Each slot lasts for 12 seconds. Each validator is assigned
to one slot in an epoch randomly.

Roles of the validators. There are three roles for the valida-
tors: proposer, attestor, and aggregator. A proposer generates
a block. An attestor votes for the blocks and the votes are
called attestations. Finally, an aggregator aggregates the at-
testations. Besides, there is a concept called committees. In
particular, validators are divided into 32 committees, one for
each slot. Each member of the committee is an attestor of
the slot. The proposer, attestor, and committees are randomly
sampled according to RANDAO4. We assume that the roles of
all validators are selected pseudorandomly and all validators
can validate the roles of other validators. Furthermore, each
validator can simultaneously have multiple roles.

In practice, each committee is further divided into subnets
and each aggregator only aggregates the signatures in the
same subnet [36]. We omit the details in this paper without
changing the correctness of the system.

Block and checkpoint. A block b consists of four fields: the
slot number, the hash of the parent block, a set of attestations,
and a batch of transactions. The blocks each validator receives
form a tree T , rooted at the genesis block. A chain c is defined
as the unique path from the genesis block to a specific leaf
block. A checkpoint block is denoted as a pair (b,e), where
b is a block and e is the epoch number. In the paper, we use
the block instead. There is only one checkpoint block in each
epoch. By default, the block proposed in the first slot of an
epoch is the checkpoint block. If a validator does not receive
the block from the proposer in the first slot, the most recent
block from the previous epoch is considered the checkpoint.

Attestation and aggregated attestation. An attestation is a
vote by an attestor, denoted as att. Each att consists of the
slot number, hashes of source and target checkpoints, and
the hash of head block. The slot number implies the time
when the attestation is created. The source and target are used
for finality. The source is the last justified checkpoint (to be
described shortly) and the target is the last checkpoint block
received by the validator. The head field is selected by the
HLMD GHOST rule, which is the leaf block of the canonical
chain. We say att is an attestation for the block in the head
field or an attestation for the checkpoint block in the target
field, without any ambiguity.

4RANDAO: https://github.com/randao/randao
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The attestations that share identical source, target, and head
can be aggregated into a single aggregated attestation. If
attestation is a vote for the block b in the head field, it is also
considered a vote for all the blocks led by b.

Finality. A checkpoint block cp might be justified and final-
ized. Informally, if a block is finalized, its order will never
be reversed. Checkpoint cp is justified after two-thirds of
attestations with cp as target are included in the chain. If a
checkpoint that extends the justified block cp is also justified,
cp is finalized. When cp is finalized, any blocks on the chain
led by cp are finalized. A block can be justified or finalized
according to the Casper FFG protocol.

Fork choice. HLMD GHOST, a variant of GHOST [35], de-
notes the rules for validators to select the canonical chain.
Based on the block tree T , HLMD GHOST starts from the last
justified checkpoint and outputs one leaf block, denoted as
head. head is used to identify the canonical chain. HLMD
GHOST has a filtering mechanism: any chain that does not jus-
tify the last justified checkpoint is discarded. For the branches
that all extend the last justified checkpoint, the output depends
on the weight of blocks. In particular, the weight of a block b
is computed as the cumulative stake of validators who have
voted for the subtree rooted at b. The subtree with the largest
weight is the heaviest subtree. HLMD GHOST recursively
chooses the heaviest subtree and outputs the leaf block.

Security properties. The Ethereum PoS protocol satisfies the
following properties.

• (Safety) If an honest validator finalizes a chain led by block
b, another honest validator finalizes a chain led by block b′,
and the two chains have the same length, b = b′.
• (Liveness) The length of the finalized chain eventually

grows for all honest validators.

3.2 The Ethereum PoS Protocol
We summarize the workflow of the vanilla Ethereum PoS
protocol in Figure 3. Each validator maintains two local pa-
rameters: the block tree T and an attestation pool (all the
received attestations) P .

The function FORKCHOICE is used for calculating the leaf
block of the canonical chain. It recursively selects the heaviest
subtree and outputs the leaf block, as mentioned above. In
case of a tie, it chooses the block according to the alphabetical
order (lines 26-35 in Figure 3).

Each slot t has three phases, as illustrated in each slot in
Figure 2. Recall that each slot has N/32 randomly selected
validators as the committee. In each slot, one validator in
the committee is selected as the proposer. All validators in
the committee are attestors. A fixed number of validators are
aggregators. Let T be the time slot t begins, and each slot
proceeds as follows.

• (Time T ) (lines 1-7 in Figure 3) The proposer vi sends
a message (PROPOSE, t,vi,H(p),atts, txs) to all validators,

Time

propose attest aggregate

T T + 2∆ T + 3∆

block attestation aggregated attestation

slot t
T + ∆

Figure 2: Slot t of the Ethereum PoS protocol (Figure 3).

where p is the output of HLMD GHOST, atts is a set of at-
testations, and txs is a batch of transactions from its queue
of pending transactions. The attestations in atts are attes-
tations for the canonical chain but have not been included
in the canonical chain yet. The proposal is also called a
proposed block b.
• (Time T +∆) (lines 8-14 in Figure 3) Each attestor sends an

attestation (ATTEST, t,vi,H(h),H(s),H(c)) to all validators
in the committee, where h is the output of HLMD GHOST, s
is vi’s last justified checkpoint, and c represents the most
recent checkpoint.
• (Time T + 2∆) (lines 15-19 in Figure 3) After receiving

the attestations, each aggregator aggregates matching attes-
tations it has received so far from slot t. The aggregated
attestation is then sent to all validators in the system.
Upon receiving a proposed block b, each validator vi adds

b in its block tree and then checks whether b is a new check-
point. If so, vi updates the justified checkpoint and the last
checkpoint (lines 20-23 in Figure 3).

Note that we use the notation ∆ for our description. As
defined in Section 3.1, ∆ is the known upper bound for mes-
sage processing and transmission in a synchronous network.
Ethereum assumes a partially synchronous network. Our use
of ∆ above can be properly interpreted as the fact that the
slot duration matches 3∆ after GST. We note that a recent
consensus protocol [23] makes the same assumption about a
partially synchronous network.

4 Classification of Malicious Reorganization
Attacks against Ethereum PoS

As mentioned in the introduction, we claim that almost all
known attacks against Ethereum PoS are some form of re-
org attacks. We thus classify known reorg attacks according
to how the adversary manipulates the canonical chain into
two types: attacks from changing block weight (Attack-I,
Section 4.1) and attacks from filtering block tree (Attack-II,
Section 4.2).

4.1 Attack-I: Modifying the Weight
In attack-I, the adversary attests attestations that change
the weight of some branch to affect the selection of HLMD



Ethereum PoS Protocol for validator vi.
global parameter: slot counter t
local parameters: block tree T , attestation pool P .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
01 upon a slot t start
02 as the proposer for slot t
03 let p be the output of FORKCHOICE

04 obtain a set of newly received attestations atts from P
05 obtain a batch of transactions txs
06 create block b =(PROPOSE, t,vi,H(p),atts, txs)
07 send b to all validators
08 upon ∆ seconds of slot t
09 as the attestor for slot t
10 let h be the output of FORKCHOICE

11 let s be the last justified checkpoint
12 let c be the last checkpoint
13 create attestation att =(ATTEST, t,vi,H(h),H(s),H(c))
14 send att to committee
15 upon 2∆ seconds of slot t
16 as the aggregator for slot t
17 let Atts be the attestations of slot t in P
18 aggregate Atts as message agg with type (AGGREGATE)
19 send agg to all validators
20 upon receiving block b =(PROPOSE, t ′,v j,H(p),atts, txs)
21 add block b into T

▷ Exploited by Attack-II
22 if block b is a checkpoint
23 update checkpoint status in the chain led by parent of b
24 upon receiving message m with type (ATTEST) & (AGGREGATE)
25 add message m into P
26 function FORKCHOICE

27 let root be the last justified checkpoint
28 let result← root
29 while true
30 for all children in result that are not pruned

▷ Exploited by Attack-I
31 choose the child b such that b is the root of heaviest subtree
32 break a tie alphabetically
33 result← b
34 if result is a leaf block
35 return result

Figure 3: Ethereum PoS protocol. H() denotes the hash func-
tion.

GHOST [12, 25, 26, 28, 33, 34]. This is usually achieved by
delaying blocks and attestations and carefully voting for the
blocks of the adversary. There are two types of attacks: (1)
the adversary tries to make the weight of a branch higher than
others [12, 28, 33, 34]; (2) the adversary tries to balance the
weight of two branches [25, 26, 34].

Type (1). The ex-ante reorg attack [28, 33, 34] mentioned
in the introduction belongs to type (1), in which the weight
by the adversary becomes heavier after the withheld block is
released. Another example is the sandwich reorg attack [12].
The sandwich reorg attack exploits the proposer boosting

mechanism [31] (also see Section 2) to make an orphaned
chain heavier than the canonical chain. As illustrated in Fig-
ure 4, the attack is an extension of the ex-ante reorg attack
and requires another Byzantine validator vl to collude with vi
(the proposer of b1). Here, vl is a valid proposer after the slot
for b2. At the end of slot t +2, block b2 is heavier than block
b1 as b2 receives more attestations. The chain led by block
b2 is the canonical chain and block b1 is orphaned. When vl
proposes a block b3, vl sets b1 as the parent block although it
is supposed to set b2 as the parent block. Due to the proposer
boosting mechanism, the weight of b3 is 70% weight of the to-
tal validators in a committee (i.e., proposer boosting weight).
Meanwhile, the weight of block b2 is the weight of honest
validators in a committee. As the weight of honest validators
is less than 70% weight of the total validators in a committee,
the branch led by b3 is the canonical chain, and block b2 by
honest validator is orphaned.

b0b0

b1b1

b2b2

b1b1

t + 1t + 1tt t + 2t + 2

b3b3

t + 3t + 3
b2b2

boost weight 
at slot t + 3t + 3

Time

Figure 4: The sandwich reorg attack [12].

Type (2). An example of the type (2) attack is the balancing
attack [25, 26, 34]. The idea is to always make two chains
have the same weight so neither chain can eventually be fi-
nalized, posing a liveness threat to the system. Specifically,
the adversary first waits for a situation where the proposers
in two consecutive slots are Byzantine. As illustrated in Fig-
ure 5, block b0 is proposed by an honest validator. The first
Byzantine validator vi withholds its block b1 in slot t +1. The
second validator v j releases both b1 and b2 (v j’s block) when
v j is the proposer in slot t +2. Both b1 and b2 set b0 as the
parent block. Next, the adversary splits honest validators into
two groups of the same size, V1 and V2, and makes each group
vote for one chain only. To achieve this goal, the adversary
withholds their attestations a1 (with b1 as head) and a2 (with
b2 as head) and releases a1, a2 only to V1, V2, respectively.
After validators in V1 receive a1, they vote for b1 as b1 is
heavier. Similarly, validators in V2 vote for b2. Thus, after
slot t +2 ends, both chains have the same number of attesta-
tions and have the same weight. The attack can be launched
continuously so no blocks can be finalized on-chain.

4.2 Attack-II: Filtering the Branch
In attack-II, the adversary proposes blocks that make honest
validators filter some branches (with blocks proposed by hon-
est validators) from their block tree [1,24,29,30,32,41]. This
is often achieved by manipulating the justified blocks. In par-
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b1b1

b2b2

b1b1

b3b3

a2a2

t + 1t + 1tt t + 2t + 2 t + 3t + 3

a1a1

Time

Figure 5: Balancing attack [25].

ticular, the adversary proposes a chain with a new checkpoint
that updates the last justified checkpoint (see lines 22&23
specified in Figure 3). While the canonical chain does not up-
date the justified checkpoint, it will be filtered by fork choice
(see filtering mechanism in Section 3.1). Below, we describe
four examples.
Unrealized justification reorg attack. The unrealized justifi-
cation reorg attacks [1] aim to justify a checkpoint in a chain
earlier than in the canonical chain. To launch the attack, the
adversary creates a branch by proposing a checkpoint that
extends an older block. After the adversarial branch is re-
leased, a new checkpoint is justified while the chain observed
by honest validators does not justify any new checkpoint. In
this way, the chain observed by honest validators is filtered
according to HLMD GHOST. As illustrated in Figure 6, con-
sider that honest validators maintain a consistent view of the
canonical chain in epoch e and the checkpoint block is cp0.
Block b1 is the first block that includes enough attestations
to justify cp0. In epoch e+1, a Byzantine validator proposes
a checkpoint cp1. Instead of setting the last block in epoch e
(i.e., b3) as the parent block, the Byzantine validator sets b1
as the parent block of cp1. This creates a new chain c2 that
conflicts with chain c1 led by block b3. After honest valida-
tors receive cp1, they update the checkpoint status (line 22
of Figure 3). Thus, checkpoint cp0 is justified in the chain
c2. After that, cp0 becomes the last justified checkpoint, and
chain c1 is filtered in HLMD GHOST. To ensure that cp1 can
justify cp0, the adversary carefully chooses the slot number
of b1 as the ⌈32× 2

3⌉= 22th slot of epoch e. Accordingly, at
most 32−22 = 10 blocks can be orphaned in the attack.

0

e + 1e + 1

b0b0 b1b1 b2b2

cp1cp1

cp0cp0 b2b2 b2b2b3b3

justify cp0cp0 
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2/3 attestations for cp0cp0

c1c1

c2c2

Time

Figure 6: Unrealized justification reorg attack [1].

Justification withholding reorg attack. Justification with-
holding reorg attacks [30, 32] aim to prevent the chain ob-
served by honest validators from justifying a checkpoint. In-

stead, the withheld blocks form a chain that justifies the last
checkpoint. The attack requires the last few proposers in an
epoch to be Byzantine. As illustrated in Figure 7, let b0 be
the last block proposed by an honest validator in epoch e.
The Byzantine validators withhold their blocks after block
b0 in epoch e. As a result, the chain led by b0 does not in-
clude enough attestations to justify the checkpoint block cp0.
In epoch e+ 1, as blocks after b0 are withheld in epoch e,
an honest validator proposes a new checkpoint cp1 that ex-
tends b0. Although honest validators receive cp1, they can
not justify a new checkpoint since fewer than two-thirds of
attestations are included in the chain led by b0 (line 22&23
in Figure 3). Right before epoch e+ 1 ends, the Byzantine
validators release the withheld block b1 and propose a new
checkpoint cp2 that extends b1. The chain led by b1 includes
two-thirds of attestations for cp0. After receiving cp2, the
chain led by cp2 justifies checkpoint cp0. The chain led by b3
will be orphaned. As the checkpoint cp0 is justified at the end
of epoch e+1, up to 32 blocks proposed by honest validators
in epoch e+1 will be reorganized.
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Figure 7: Justification withholding reorg attack [30].

Bouncing attack. The bouncing attack [24, 29] aims to make
the last justified checkpoint switch between two chains, and
neither chain can be finalized. The attack exploits the fact that
chains conflicting with the last justified checkpoint are pruned
in HLMD GHOST. As shown in Figure 8, the attack assumes
that there are two chains, c1 and c2, after GST. Among two
chains, chain c1 led by checkpoint block cp1 is the canonical
chain observed by honest validators. Another chain c2 is led
by checkpoint block cp2. Both checkpoints cp1 and cp2 ex-
tend the last justified checkpoint cp0. Here, checkpoint cp2
is called justifiable, i.e., it can be justified after attestations
from the adversary are released [24]. In epoch e+2, honest
validators extend the canonical chain c1. The checkpoint of
chain c1 in epoch e+2 is cp′1. After one-third of attestations
vote for checkpoint cp′1 in epoch e+2, the adversary justifies
the justifiable checkpoint cp2 in chain c2. Checkpoint cp2 is
the last justified checkpoint. As chain c1 conflicts with cp2,
chain c1 is filtered in HLMD GHOST and chain c2 becomes the
canonical chain. The honest validators start to extend chain
c2. The checkpoint cp′1 becomes the new justifiable check-
point. The adversary then can repeat the above strategies and



make the last justified checkpoint switch between two chains.
In this way, neither chain can be finalized, posing a liveness
threat to the system.

Note that the attack can only be launched when the network
is temporarily asynchronous. After the attack is successfully
launched, the attack can be repeated, even after GST.
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Figure 8: Bouncing attack [24].

Staircase attack. Staircase attack [41] aims to make honest
validators suffer from penalties even if they strictly follow the
protocol in a synchronous network after Capella upgrade [20]
(also see Section 2). In staircase attacks, Byzantine validators
withhold their attestations to prevent the canonical chain from
justifying the last checkpoint. As illustrated in Figure 9, in
epoch e, the Byzantine validators withhold their attestations
to prevent the honest validators from justifying the checkpoint
cp0. The attestations from Byzantine validators are included
in a withheld block b1, a block proposed by a Byzantine val-
idator. Before the middle of epoch e+1, all honest validators
extend the chain led by block b0. After the middle of epoch
e+ 1, the withheld block b1 is released. The last justified
checkpoint is updated as only the withheld chain includes
two-thirds of attestations for checkpoint block cp0. The chain
led by cp1 is filtered in HLMD GHOST and the chain led by
b1 becomes the canonical chain. In this attack, the attesta-
tions from honest validators in the first half of epoch e+ 1
are discarded, as the chain they vote for is not later finalized.
These honest validators suffer from penalties [36] according
to the protocol. It was shown that by controlling 29.6% of
the total stake, the attack can be conducted in every epoch
so eventually all honest validators suffer from no incentive
rewards.

4.3 Summary
One notable reason why malicious reorganization is so “easy”
is that one can not validate whether a block b proposed by a
validator is correct, e.g., b indeed extends the canonical chain
and is released on time. Since one can never differentiate
a slow but honest validator and a Byzantine validator in a
partially synchronous network, building a reorg-resilient so-
lution is thus valuable. Luckily, we show that reorg resilience
can be achieved when the network is synchronous. When the
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Figure 9: Staircase attack [41].

network is temporarily asynchronous, our approach can still
achieve the safety and liveness properties.

5 Overview of our Approach

In this section, we provide an overview of our approach. We
begin with the definition of reorg resilience and then provide
an overview of our technical contributions.

Reorg resilience. We define the property as follows.

• (Reorg resilience) If an honest proposer proposes a block b
in the synchronous network, b will eventually be finalized.

The notion of reorg resilience is not new. Goldfish [10] first
studied reorg resilience and provided a synchronous proto-
col that is proved to be reorg resilient. The insight made by
the paper is that conventional Byzantine fault-tolerant (BFT)
protocols [8, 16, 22, 39, 40] do not suffer from the reorg is-
sues. Namely, most conventional BFT protocols require the
validators to collect a sufficiently large fraction of attesta-
tions (i.e., a Byzantine quorum of votes [7]) before proceed-
ing to the next “phase”. Any validator that proposes a new
block is considered valid only if its parent block has accumu-
lated a sufficiently large fraction of attestations. Accordingly,
Goldfish provided a hybrid of PoS and conventional Byzan-
tine fault-tolerant (BFT) protocol to achieve reorg resilience.
The limitation, also as pointed out by follow-up work RLMD-
GHOST [13], is that Goldfish cannot be directly adapted to
Ethereum since it is provably secure only in the synchronous
network while Ethereum assumes a partially synchronous
network. RLMD-GHOST later provided a solution in the par-
tially synchronous model. The drawback of RLMD-GHOST is
that it requires all validators to vote in every slot, making it
impractical for Ethereum PoS. Namely, Ethereum already has
over one million validators5. It is too expensive to support
all-to-all communication in such a large-scale network.

Our approach in a nutshell. We provide a lightweight yet
efficient solution for Ethereum PoS which is: 1) reorg resilient

5Date source (accessed in Aug 2024): https://www.beaconcha.in/.

https://www.beaconcha.in/


in a synchronous network; 2) safe and live in a partially syn-
chronous network; and 3) easy to implement and deploy. As
motivated in the introduction, we introduce available attes-
tation (AA), an approach inspired by conventional BFT pro-
tocols from weak quorum of attestations [17, 21]. Namely,
consider a system with N validators, among which at most f
are faulty. If f + 1 validators vote for a block b in slot t, at
least one honest validator has validated b. The f +1 attesta-
tions become a proof of the availability of b. We use AAt to
denote a block with f +1 attestations in slot t.

Put the concept of weak quorums in the context of
Ethereum PoS, we define AA as a mechanism that checks
whether a block receives matching attestations from at least
one-third of validators6. In particular, if b is a block for slot t,
its child must include attestations for b from at least one-third
of validators in slot t. We use the notion of stable block to
describe this scenario. Having such a AA rule is useful in a
synchronous network already. We show an example in Fig-
ure 10a. The proposer vi is honest and it proposes block b. At
time T +∆, all honest validators receive b and will send an
attestation by setting the head field as b. At time T +2∆, all
honest aggregators receive the attestations, aggregate them,
and send them to all validators. At time T +3∆ (the end of
slot t), all honest validators receive them, so AAt is formed.
In contrast, if the proposer vi is Byzantine (Figure 10b) and
does not propose on time or does not extend the canonical
chain, AAt will not be formed.

bb

propose attest aggregate

T T + 2∆ T + 3∆
slot t

T + ∆

AAtAAt

Time

(a) In a synchronous network, a block b proposed by an honest val-
idator always receives an AAt .

bb

propose attest aggregate

T T + 2∆ T + 3∆
slot t

T + ∆
bb Time

(b) If a block b is delayed, AAt cannot be formed.

Figure 10: Motivation of available attestation.

Remark. Our solution is reorg-resilient only when the net-
work becomes synchronous. We argue that providing such
a solution is already meaningful. First, as mentioned in the
introduction, it is impossible to distinguish faulty validators

6For simplicity, we assume that all validators attest in every slot in this
section.

from slow validators, so reorg resilience cannot be achieved.
Second, most of the time, the Ethereum network works syn-
chronously. According to Ethereum network statistics7, the
average participation rate reaches 99%, where all the mes-
sages are received on time. In particular, the average partic-
ipation rate is calculated over the entire operational period
of Ethereum 2.0 since September 2022. During this period,
the lowest participation rate was 96.3% (on May 12, 2023)
and the standard deviation has been low. As summarized in
Table 1, most malicious reorganization attacks on Ethereum
are launched when the network is synchronous. Therefore,
our solution is already meaningful. Finally, our solution is
both safe and live under the partially synchronous model.

6 Our Modified PoS Protocol

We are now ready to present our modified PoS protocol. In
this section, we first introduce the notations and the definitions
and then show the workflow in detail.

6.1 Notations and Definitions

Recall that the validators are divided into 32 disjoint commit-
tees randomly. Since the committees are sampled pseudoran-
domly, the fraction of Byzantine validators in each committee
follows a binomial distribution. Namely, if n is large enough,
each committee has at most one-third of Byzantine validators
with an overwhelming probability. While we provide detailed
analysis in Section 9, we simplify the description. In partic-
ular, we use ϑ to denote the number of Byzantine validators
in each committee and p as the desirable failure probability
(i.e., the probability that the number of Byzantine validators
in a committee is greater than ϑ).

Definition 1 (stable block). A block b proposed in slot t is a
stable block, if b includes at least ϑ+1 attestations for b′ in
slot t−1, where b′ is the parent block of b.

Definition 2 (unstable block). Block b is an unstable block
if b is not a stable block.

Definition 3 (stable chain). The chain c is a stable chain, if
the leaf block of c is a stable block.

Remark. We do not introduce the concept of weight in this
paper. In Ethereum, the weight of an attestation denotes the
fraction of the stake of the attestor. Accordingly, a block b
is stable if the weight of attestations included in b (for the
parent block b′) is higher than ϑ′, where ϑ′ is the fraction of
stake owned by Byzantine validators.

7Data source (accessed August 2024): https://beaconcha.in/cha
rts/participation_rate.

https://beaconcha.in/charts/participation_rate
https://beaconcha.in/charts/participation_rate


Modified Ethereum PoS protocol for validator vi.
global parameter: slot counter t.
local parameters: block tree T , attestation pool P .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
01 upon a slot t start
02 as the proposer for slot t
03 if AAt−1 exist
04 let p be AAt−1 block (randomly if two)
05 else let p be the output of FORKCHOICE

06 obtain a set of newly received attestations atts from P
07 obtain a batch of transactions txs
08 let u be the latest unstable block (None if no such block exists)
09 create a forwarding info f i =(INFO, t,vi,H(p),H(atts, txs))
10 create block b =(PROPOSE, f i,atts, txs,H(u))
11 send b to all validators
12 upon ∆ seconds of slot t
13 as the attestor for slot t
14 let h be the output of FORKCHOICE

15 let s be the last justified checkpoint
16 let c be the the last checkpoint
17 create message att =(ATTEST, t,vi,H(h),H(s),H(c),h. f i)
18 send att to committee
19 upon 2∆ seconds of slot t
20 as the aggregator for slot t
21 let Atts be the attestations of slot t in P
22 aggregate Atts as message agg with type (AGGREGATE)
23 send agg to all validators
24 upon receiving block b = (PROPOSE, f i,atts, txs)
25 add block b into T
26 if b includes at least ϑ+1 attestations in slot t ′−1 for b.parent
27 set b as stable
28 if b is a checkpoint
29 update checkpoint status in the chain led by parent of b
30 else set b as unstable
31 upon receiving message m with type (ATTEST) & (AGGREGATE)
32 add message m into P
33 function FORKCHOICE

34 let root be the last justified checkpoint
35 let C be set of stable chains extending root that are not filtered
36 let result← nil
37 for c in C
38 if c is longer than result
39 result← c
40 else if c is as long as result

and leaf block of c is later than leaf block of result
41 result← c
42 return result

Figure 11: The modified protocol workflow. Changes on top
of Figure 3 are highlighted using blue. H() denotes the hash
function.

6.2 Protocol Workflow

We show the workflow of the modified Ethereum PoS protocol
in Figure 11. The changes on top of the protocol in Figure 3
are highlighted in blue.

• If a stable block p with AAt−1 exists, vi sets the parent
field as p. If two AAt−1 blocks exist, vi breaks the tie by ran-
domly selecting one. Otherwise, vi uses the output of func-
tion FORKCHOICE as the parent (lines 3-5 in Figure 11).
Note that there exists a case where a Byzantine validator
v j proposes two conflicting blocks in slot t and both blocks
form AAt−1. Upon receiving such blocks, vi still randomly
selects one block. The proposer of the two blocks will even-
tually be slashed.
• Upon receiving a proposed block b in slot t ′, validator vi

includes b in its block tree T and checks whether b is a
stable block, i.e., b includes at least ϑ+ 1 attestations in
slot t ′−1 (the head of the attestations is the parent of b). If
so, vi processes the stable block. Otherwise, block b is an
unstable block (lines 24-30 in Figure 11).
• We replace the HLMD GHOST with the longest chain as the

fork choice rule. Our longest chain fork choice rule is very
simple: it outputs the head of the chain with the most stable
blocks. In case of a tie, the longest chain fork choice rule
chooses the chain such that the leaf block has the largest
slot number. (lines 33-42 in Figure 11).
• We introduce a forwarding rule for the block proposals.

The forwarding rule modifies the data structure of the block
proposal and the attestation. In particular, proposer vi cre-
ates a digital signature for (t,vi,H(p),H(atts, txs)), where
H(p) is the hash of the parent block, H(atts, txs) is the
hash of the attestations and proposed transactions. The tu-
ple with the signature is called forwarding info f i (line 9
in Figure 11). When a proposer sends a proposed block,
it sends (PROPOSE, f i,atts, txs) to all validators (line 10 in
Figure 11). Meanwhile, upon receiving a proposed block,
each attestor includes f i in its attestation and sends it to the
committee (line 17 in Figure 11). If validator vi receives
valid forwarding info f i (with digital signatures from some
proposer) but has not received the block yet, it obtains the
original block proposal from other validators. Then, vi pro-
cesses the block according to the protocol.
• We additionally have an u field in a block b. Each proposer

sets its u field as the hash of an unstable block. If there is
no such unstable block, set u as None. The transactions in
the unstable blocks should not conflict with the transactions
in the longest chain. The transactions in u can also be
finalized once block b (that includes u) is finalized (line 8
in Figure 11).

The longest chain fork choice rule. We provide an example
of our new longest chain fork choice rule in Figure 12. The
tree root is the last justified checkpoint. Three chains extend
the root, namely c1, c2, and c3 (line 35 in Figure 11). Our rule
selects the chain with the most number of stable blocks, i.e.,
the chain led by block b2 (lines 37-40 in Figure 11).

Note that unstable blocks are not considered in our new
fork choice rule. When the network is synchronous, we can
in fact directly ignore unstable blocks. To deal with network



asynchrony, we still need to consider unstable blocks. In our
protocol, unstable blocks can be included in the blocks if the
transactions in unstable blocks do not conflict (i.e., b4 will in
the u field of some block in c2 (lines 8 in Figure 11)).

b2b2

b3b3

b1b1

b4b4

stable block unstable block forkchoice outputLJ checkpoint

chain c1c1

chain c2c2

chain c3c3

Figure 12: The longest chain fork choice. LJ checkpoint is an
abbreviation for the last justified checkpoint.

The forwarding rule. We use the forwarding rule to prevent
Byzantine validators from partial withholding blocks. Assume
that a block b from the adversary is only released to honest
validators vi in slot t. vi will release attestations including
the forwarding info of b. All honest validators receive the
forwarding info by the end of slot t. Even if some honest
validators may not have received b directly, they still add b in
their block tree (see Lemma 1 for details).

Sketch of correctness. While we provide security analysis in
Section 7 and Appendix A, we briefly discuss why our modi-
fied protocol: 1) achieves reorg resilience when the network
is synchronous; and 2) achieves standard safety and liveness
properties in a partially synchronous network.

The reason why our approach is reorg resilient is that the
AA mechanism prevents Byzantine validators from creating
conflicting branches. As summarized in Section 4, there are
two strategies for Byzantine validators: (1) Byzantine valida-
tors directly propose a block conflicting with the canonical
chain and (2) Byzantine validators propose a block that ex-
tends the canonical chain and delays releasing the block. None
of the strategies work anymore after AA is used. For the first
type, only the leaf blocks in the block tree can be the output of
the fork choice rule. If a Byzantine validator tries to create a
block b1 that extends a block b0 that is not a leaf block, b0 will
receive no attestations from honest validators. Thus, block b1
is an unstable block. For the second type, our approach en-
sures that if Byzantine validators withhold at least two stable
blocks, one of them must have already been observed by all
honest validators (see Lemma 2 for details).

Now it becomes clear why we use the longest chain rule to
replace the HLMD GHOST rule. Informally, as HLMD GHOST
rule determines the canonical chain based on the weight of the
blocks and the weight is determined by the number of attesta-
tions, the HLMD GHOST rule cannot prevent the adversaries
from withholding their attestations.

Our modified protocol can achieve the safety and liveness
properties of the consensus protocol. Safety still holds since

we do not modify Casper, the finality gadget protocol. Live-
ness is achieved after GST mainly because our protocol is
reorg resilient in a synchronous network. As all honest val-
idators consider the blocks proposed by honest validators the
longest chain, their attestations will be considered valid by all
honest validators so eventually some block is finalized.
Overhead. Our approach does not introduce additional com-
putation and only introduces little overhead for communica-
tion. In particular, the only change that will affect the commu-
nication is the forwarding rule, where each attestor includes
the forwarding information in its attestations. The forwarding
information includes a slot number, an identifier of the valida-
tor, and two hashes. The length of the forwarding information
is thus the same as each attestation.

7 Security Analysis

Theorem 1. The modified Ethereum PoS protocol satisfies
reorg resilience in the synchronous model and satisfies safety
and liveness properties in the partially synchronous model.

Due to space constraints, we prove reorg resilience in this
section and discuss safety and liveness in Appendix A.

Lemma 1. When the network is synchronous, if an honest
attestor votes for a block b in slot t, by the end of slot t, all
honest validators receive b.

Proof. Let T be the time slot t begins. Assume that an honest
attestor vi votes for b at T +∆. According to the protocol, vi
forwards the message to all committee members in slot t. At
time T +2∆, any correct aggregator receives the forwarding
info f i for b and sends f i to all validators. All honest valida-
tors receive f i by time T +3∆. Accordingly, at the end of slot
t, all honest validators receive b.

Lemma 2. If the network is synchronous and two consecutive
stable blocks are withheld by Byzantine validators, at least
one of them must have been received by all honest validators
before they are released.

Proof. Towards a contradiction, consider two blocks b1 and
b2 that are withheld by two Byzantine validators vi (for slot t)
and v j (for slot k), respectively. Furthermore, b2 extends b1.
Since b2 is a stable block, b2 consists of ϑ+1 attestations for
block b1. At least one honest validator votes for b1. According
to Lemma 1, all honest validators receive b1 by the end of slot
k−1.

Lemma 3. When the network is synchronous, no branch can
justify a new checkpoint earlier than the longest chain of any
honest validator.

Proof. Towards a contradiction, assume that, in slot t, there
exists a chain c0 that justifies a new checkpoint cp0 while
the longest chain of any honest validator does not, i.e., chain



c0 conflicts with the longest chain of all honest validators.
According to the protocol, to justify checkpoint cp0 in slot
t in chain c0, a new checkpoint cp1 is proposed in slot t in
chain c0 (line 28 in Figure 11).

We prove that c0 is not the longest chain of any honest
validator in slot t−1. We denote the longest chain as chain c1.
As cp1 is the latest block and c0 is not the longest chain of any
honest validator in slot t, c0 is shorter than chain c1 in slot t.
By Lemma 2, two consecutive blocks can not both be withheld
as at least one of them must have been received by all honest
validators. Therefore, before slot t−1 ends, at most one block
b0 is withheld in chain c1. In slot t, b0 may be released in
c1. As cp1 is released in c0 in slot t, c1 is still longer than
c0 in slot t − 1. Therefore, c0 can not be the longest chain
of any honest validators in slot t−1 and no honest validator
votes for blocks in c0 in slot t− 1, a contradiction with the
assumption that cp1 is a stable block in slot t that justifies a
new checkpoint on c0.

Lemma 4. When the network is synchronous, a stable block
proposed by an honest proposer in a slot t is the output of the
longest chain rule of any honest validator by the end of slot t.

Proof. Let b be the block proposed by the honest proposer in
slot t. The proof consists of two parts. First, by the end of slot
t, all honest validators receive b and add b to their block tree.
Second, by the end of slot t, the chain led by b is the longest
chain for all honest validators.

We begin with the first part. Let T be the time slot t begins.
As the network is synchronous, by time T +∆, all honest
attestors receive b and send their attestations. By Lemma 1,
all honest validators receive b at the end of slot t.

We now prove the second part. Towards a contradiction,
suppose that the chain led by b is not the longest chain of
all honest validators. There are three cases: 1) there exists a
longer chain c′ before slot t ends; 2) there exists a chain c′

before slot t ends and c′ has the same length as the chain led
by b; 3) there exists a chain c′ that justifies some checkpoint
that is higher than the last justified checkpoint of c. In the first
case, for c′ to be longer, its last two blocks must have been
withheld by the adversary before slot t, a contradiction with
Lemma 2. In the second case, as the slot number of block b
is larger than the leaf block of chain c′, block b is the output
of the longest chain according to our protocol (line 37 in
Figure 11). Finally, the third case is a violation of Lemma 3.

The lemma thus holds.

Theorem 2. When the network is synchronous, once an hon-
est validator proposes a stable block b, all subsequent stable
blocks extend this chain. A block by the Byzantine validators
that does not extend b will not be considered valid by honest
validators.

Proof. Let t be the slot when an honest validator proposes a
stable block b on chain c. We prove the lemma by induction
on k, where k is the number of slots after t and k > 0.

(1) Base case (k = 1): By Lemma 4, b will become the head
of the longest chain for all honest validators. All honest
validators will vote for b by the end of slot t. If the proposer
of slot t + k is honest, it proposes a block that extends b. If
the proposer of slot t +k is Byzantine and proposes a block
that does not extend b, the block will not be considered
valid by an honest validator as honest attestors only vote
for a block that extends its longest chain.

(2) Induction step: By the induction hypothesis, all blocks
from slot t +1 to t + k extend chain c. Following a similar
argument as above, the theorem holds.

Theorem 3. When the network is synchronous, the finalized
chain is the prefix of the longest chain of any honest validator.

Proof. Towards a contradiction, we assume there exists a fi-
nalized checkpoint block cp that conflicts with the longest
chain by some honest validators. For a checkpoint to be fi-
nalized, cp must have previously been justified. When check-
point cp was justified, at least f +1 honest validators vote for
cp (by setting cp as target). This implies that f + 1 honest
validators, at the time of voting (e.g., slot t), consider the chain
containing block cp the longest chain. Let the latest head of
the chain by any such honest validator be b′. According to
Lemma 1, all honest validators receive b′ by the end of slot t.
It is then not difficult to see that all honest validators consider
the chain led by b′ the longest chain by Theorem 2.

We are now ready to prove reorg resilience (i.e., Theo-
rem 1).

Proof. We first show that any block from an honest validator
will be included in the longest chain of any honest validator.
Suppose an honest proposer proposes a stable block b in slot t.
According to Lemma 4, b is the output of the longest chain by
any honest validator at the beginning of slot t +1. In addition,
according to Theorem 2, after b is proposed, any withheld
blocks will never become the longest chain by any honest
validators. Therefore, b is always in the longest chain at slot
t ′ > t. Finally, Theorem 3 shows that the longest chain by
any honest validator does not conflict with the finalized chain.
Therefore, block b will be finalized.

8 Implementation and Evaluation

Implementation. We implement our modification on top of
Prysm8, one of the most widely adopted Ethereum 2.0 beacon
chain implementations written in Golang. The Prysm version
is v5.0 (the newest version as of Aug 2024). We have made
our code available9. Our codebase modifies around 1,000

8Prysm: https://github.com/prysmaticlabs/prysm
9Implementation of our modified protocol and the attacks: https:

//zenodo.org/records/14760370

https://github.com/prysmaticlabs/prysm
https://zenodo.org/records/14760370
https://zenodo.org/records/14760370


LOC. Additionally, we implement approximately 5,000 LOC
for evaluation.
Evaluation. We evaluate the performance of our protocols on
Amazon EC2 using one virtual machine. We use m5.xlarge
instances for our evaluation. The m5.xlarge instance has four
virtual CPUs and 16GB of memory. We deploy our protocols
in the LAN setting to provide better synchronous network
conditions for our evaluation. We use 16,384 validators for
both the vanilla Ethereum PoS protocol and our modified pro-
tocol. Among these validators, 5,461 validators are Byzantine
validators. In addition, we set ϑ as 234 to achieve reorg re-
silience with probability 1−10−9 (the reason why we choose
the value can be found in Section 9).

Our evaluation seeks to answer two questions. First, is
our approach reorg resilient in practice (despite the fact that
our approach is already provably secure)? Second, how much
overhead does our approach introduce compared to the vanilla
protocol? To answer the first question, we implement five re-
org attacks shown in Section 4 and calculate the number of
reorganized blocks by honest validators of both protocols. To
answer the second question, we evaluate the throughput and
latency of our approach and compare it with vanilla Prysm.
For throughput, we focus on the failure-free case with no
Byzantine validators. For latency, we focus on the computa-
tion time (e.g., block generation and attestation generation)
in both protocols. The overhead created by our modifications
to the protocol is reflected in the throughput.
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Figure 13: The number of blocks from honest validators that
are reorganized out of 500 blocks. Attacks i, ii, iii, iv, and
v represent the ex-ante reorg attack, sandwich reorg attack,
unrealized justification reorg attack, justification withholding
reorg attack, and staircase attack, respectively.

Resilience to reorganization attacks. We implement five
reorg attacks, including ex-ante reorg attack, sandwich reorg
attack, unrealized justification reorg attack, justification with-
holding reorg attack, and staircase attack. Although Ethereum
has implemented mitigation for most of these attacks, we can
slightly modify the attack strategies to make ex-ante reorg
attacks and staircase attacks successful. The modified attack
strategies for these attacks can be found in Appendix B.

We conduct each experiment for approximately two and a
half hours and set the number of blocks from honest validators
as 500. In all experiments, we randomly sample around 33.3%
Byzantine validators. We then measure the number of reorga-
nized blocks from honest validators. As shown in Figure 13,
our modified protocol is reorg resilient to all reorg attacks
as the number of blocks from honest validators reorganized
in all experiments is zero. In contrast, the vanilla protocol
can prevent the unrealized justification reorg attack and the
justification withholding reorg attack. However, ex-ante reorg
attacks, sandwich reorg attacks, and staircase attacks can still
be conducted in the vanilla protocol.
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Figure 14: The throughput of the vanilla Ethereum PoS proto-
col and our modified Ethereum PoS protocol in the failure-free
case.

Performance. We show the throughput of our approach in
Figure 14. We set the gas consumption of each transaction to
be 21,000 gwei and we use the standard “transfer” transac-
tions in our evaluation. As transaction volume increases, the
throughput in both vanilla Ethereum PoS protocol and modi-
fied Ethereum PoS protocol increases, with a peak throughput
of around 110 tx/s. This is aligned with the gas limitation
of a block (by default 30,000,000). In addition, the through-
put of our modified protocol is almost identical to the vanilla
protocol.

test items vanilla modified overhead
block generation 6.44ms 6.61ms -2.6%

block verification 16.49ms 18.28ms -10.9%

attestation generation 17.39us 17.74us -2%

attestation verification 17.07us 19.99us -14.4%

Table 2: Latency breakdown of the vanilla Ethereum PoS
protocol and the modified Ethereum PoS protocol.

Latency. We measure the latency breakdown of our approach
and compare it with the vanilla protocol. As each slot lasts
for a fixed duration, we alternatively assess the latency for



block generation, block validation (the time it takes to verify
a received block), attestation generation, and attestation veri-
fication (the time it takes to verify an attestation). As shown
in Table 2, our approach introduces minimum overhead for
the computation of the functions.

Note that we only test our system with 16,384 validators.
There may exist some problems when migrating our modified
protocol to Ethereum, as Ethereum now has over one million
validators. We leave it as future work.

9 Analysis of the Concrete Probability of
Achieving Reorg Resilience

So far, we assume that each committee has at most ϑ Byzan-
tine validators so ϑ+1 attestations form a AA. In this section,
we analyze the concrete probability.

As shown in Section 3, each committee is composed of
n/32 randomly selected validators. The distribution of the
number of Byzantine validators in each committee can then
be modeled as a binomial distribution.

Let nc be the size of a committee and f ′ = f/32. Our
goal is to determine the probability that a randomly selected
committee contains no more than ϑ Byzantine validators.

Theorem 4. Let X be the random variable representing the
number of Byzantine validators in a committee. For a large n,
X follows a binomial distribution approximated by a normal
distribution: X ∼ N(µ,σ2), where µ = f ′ and σ2 = f ′(1−
f/n)

Proof. The selection of Byzantine validators for a commit-
tee follows a binomial distribution with parameters nc and
p = f/n. For large n, this binomial distribution can be approx-
imated by a normal distribution with mean µ = nc p = f/32 =
f ′ and variance σ2 = nc p(1− p) = f ′(1− f/n), according to
the Central Limit Theorem [15].

Using this distribution, we can calculate the probability
that a committee contains more than ϑ Byzantine validators:

P(X > ϑ) = 1−Φ(
ϑ−µ

σ
),

where Φ is the cumulative distribution function of the normal
distribution, µ = f ′, and σ =

√
f ′(1− f/n).

The key insight is that we can adjust ϑ based on the desired
probability P(X > ϑ) and the total number of validators n.
Let the desired failure probability be p. Then, we want to find
ϑ such that:

P(X > ϑ) = p.

Solving this equation, we get:

ϑ = ⌊µ+σ ·Φ−1(1− p)⌋,

where Φ−1 is the inverse of the cumulative distribution func-
tion of the normal distribution. This formula allows us to

n
p

10−6 10−7 10−8 10−9

214 0.4316 0.4414 0.4492 0.4570
216 0.3828 0.3872 0.3916 0.3955
218 0.3580 0.3603 0.3625 0.3645
220 0.3457 0.3468 0.3479 0.3489

Table 3: The ratio of ϑ to nc for different n and p values.

calculate the appropriate ϑ for different values of n and de-
sired probabilities p.

In Table 3, we show some concrete examples of the ϑ/nc
with specific n and the desirable failure probability p. In the
parameter setting of Ethereum, the minimum number of val-
idators is 214. Ethereum now has approximately 220 validators.
The maximum desirable probability 10−6 means that the pro-
tocol fails once every 106 slots, i.e., 138 days. If the desirable
failure probability is 10−9, malicious reorganization occurs
once every 380 years. We can then draw some conclusions
below.

(1) For a fixed n, if a lower p is tolerable (i.e., as we require a
lower probability of having too many Byzantine validators),
the ratio ϑ/nc increases so we need to set up a larger ϑ in
our approach.

(2) For a fixed p, as n increases, the ϑ/nc is closer to f/n. In
this way, we can simply set ϑ as one-third of the committee
size.

(3) For a small n and a smaller p (e.g., p = 10−19), the value
of ϑ/nc may exceed 0.5. In such cases, reorg resilience is
not achieved with overwhelming probability. To mitigate
this risk, careful parameter selection is required.

10 Conclusion

Malicious reorganization attacks are known to be a primary
threat to the Ethereum Proof-of-Stake (PoS) consensus pro-
tocol. In this work, we propose the first provably secure and
lightweight solution to achieve reorg resilience. Central to our
approach is an available attestation (AA) mechanism, which
ensures that validators only vote for a chain with blocks ob-
served by more than one-third of validators. Our evaluation
results show that our approach is reorg resilient and does not
degrade the performance of the system at all.
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11 Ethics Considerations and Open Science
Policy Compliance

In the section, we show the commitment to ethical research
practices and open science principles for our paper on a mod-
ified Ethereum protocol to address malicious reorganization
attacks. We have carefully considered the ethical implications
of our research and strive to conduct our work responsibly.

11.1 Research Ethics Considerations

We are committed to complying with all relevant research
ethics considerations. In particular, we are committed to the
following principles.

• Stakeholder Consideration: We have carefully consid-
ered the potential impacts on various stakeholders, includ-
ing Ethereum users, validators, developers, and the broader
cryptocurrency ecosystem.
• Vulnerability Disclosure: Our research does not uncover

new vulnerabilities but analyzes known malicious reorgani-
zation attacks. We will ensure any discussion of vulnerabil-
ities is responsible and does not provide additional exploit
information.
• Live System Testing: We have not conducted experiments

on the live Ethereum network. All experiments were per-
formed using the local testnet.
• Beneficence: Our research aims to improve the security

and stability of the Ethereum network, providing a net pos-
itive benefit to the community. We have carefully weighed
potential negative outcomes against these benefits.
• Respect for Persons: Our research does not involve human

subjects or personal data. We respect the work of other
researchers and properly cite all relevant prior work.
• Justice: We strive to ensure our proposed modifications do

not disproportionately impact or disadvantage any particu-
lar group of Ethereum users or validators.
• Respect for Law and Public Interest: Our research com-

plies with all applicable laws and regulations. We have
considered the broader societal implications of more secure
blockchain systems.
• Potential Dual Use: We acknowledge that improvements

in blockchain security could potentially be used by both
legitimate and illicit actors. We focus our work on the reorg
resilience and avoid providing any information that could
be misused.
• Team Member Wellbeing: Our research did not expose

team members to harmful or disturbing content. We ensured
all team members were comfortable with the nature and
scope of the research.
• Institutional Review: While our research did not require

formal Institutional Review Board (IRB) approval, we have
consulted with experts and followed established best prac-
tices in blockchain and security research.

We are committed to addressing any ethical concerns that
may arise during the review process or after publication. We
welcome feedback from the research community on these
ethical considerations and are prepared to make adjustments
to our approach if necessary.

11.2 Compliance with Open Science Policy
We are committed to the principles of open science, ensuring
transparency, reproducibility, and accessibility throughout the
research process. We adhere to the following practices:
• Data Availability: All experiment data used in our anal-

ysis will be made publicly available in a repository upon
publication.
• Code Availability: Any code for the implementation of

our modified protocol and the attacks will be open-sourced
under MIT License and shared via Zenodo10.
• Reproducibility: We will provide detailed documentation

on our methodology to enable other researchers to repro-
duce our results.
• Preprint: We intend to post a preprint of our paper on

ePrint11 prior to publication to facilitate early feedback and
dissemination.
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A Safety and Liveness Proof

In this section, we provide a formal safety and liveness proof for our
modified protocol, as presented in Section 7.

A.1 Safety
Our modified protocol does not modify the Casper FFG [5] in vanilla
Ethereum PoS protocol. Thus, our protocol can achieve the same
safety guarantee as Casper FFG. In this section, we prove the cor-
rectness of the protocol using the notions used in Casper FFG.

We first introduce the slashing conditions defined in Casper FFG.
According to these conditions, any validators found in violation will
be slashed, meaning their entire deposits are forfeited and subse-
quently removed from the system. Casper FFG operates under the
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assumption that the fraction of validators susceptible to slashing is
less than one-third of the total validators, a condition referred to as
1/3-slashable [6].

We now formalize the slashing condition, justified checkpoint,
and finalized checkpoint. To give a formal definition, we expand the
attestation notion as (s, t,h), where s, t, and h represent the source
checkpoint, the target checkpoint, and head block, respectively. As
we only consider the checkpoints in attestations, we only consider
(s, t) as an attestation. In addition, we use ep(cp) to represent the
epoch of the checkpoint cp.

There are two slashing conditions:

• (I-Double Voting) A validator can not publish two distinct votes
for the same target epoch. Formally, for any two attestations (s1, t1)
and (s2, t2), ep(t1) ̸= ep(t2).
• (II-Surround Voting) A validator can not vote within the span

of its other votes. Formally, for any two attestation (s1, t1) and
(s2, t2), ep(s1)< ep(s2)< ep(t2)< ep(t1) can not hold.

Definition 4 (Justified Checkpoint). A checkpoint cp is justified if
at least two-thirds of validators attest (s,cp), where s is a justified
checkpoint.

Definition 5 (Finalized Checkpoint). A checkpoint cp is a finalized
checkpoint if (1) cp is a justified checkpoint, (2) at least two-thirds of
validators attest (cp, t), and (3) the consecutive checkpoints between
cp and t are all justified.

Lemma 5. If 1/3-slashable holds, each justified checkpoint cp has
a unique epoch number ep(cp).

Proof. Towards a contradiction, assume that two justified check-
points cp1 and cp2 have the same epoch number e. At least n− f
validators have sent attestations by setting target as cp1. Meanwhile,
at least n− f validators have sent attestations by setting target as cp2.
Since there are at most f Byzantine validators, at least one validator
has sent both an attestation with cp1 as target and an attestation with
cp2 as target, a contradiction.

Theorem 5 (Safety). If 1/3-slashable holds, two conflicting check-
points can not both be finalized.

Proof. Towards a contradiction, assume that there exist two con-
flicting finalized checkpoints, cp1 and cp2. WLOG, we assume that
ep(cp1) < ep(cp2) (ep(cp1) ̸= ep(cp2) by Lemma 5). As check-
point cp1 is finalized, at least two-thirds of validators have sent an
attestation for (cp1,cp′1) (where cp1 is source and cp′1 is target). By
Definition 5, as cp1 is finalized, the consecutive checkpoints between
cp1 and cp′1 are all justified. By Lemma 5, ep(cp′1)< ep(cp2). As
checkpoint cp2 is finalized, checkpoint cp2 is justified, at least n− f
validators have sent an attestation (s,cp2) (where s is source and cp2
is target). By Lemma 5, ep(s)< ep(cp1). As ep(cp1)< ep(cp′1), at
least one honest validator has sent an attestation (cp1,cp′1) and an
attestation (s,cp2) such that ep(s)< ep(cp1)< ep(cp′1)< ep(cp2),
a contradiction.

A.2 Liveness
The vanilla Ethereum PoS protocol achieves plausible liveness and
probabilistic liveness [5]. The two properties are not very formally
defined. Informally, plausible liveness means that it is always possi-
ble to finalize a block and some blocks always extend the finalized

chain. Probabilistic liveness means that it is possible that some block
is finalized. Notably, there is a gap between plausible liveness/prob-
abilistic liveness and the conventional liveness property, also as
mentioned by the Gasper paper [5].

We now show that our modified protocol achieves the conven-
tional liveness property.

Lemma 6. If the network is asynchronous and a block b is AAt in a
slot t, all honest validators receive b after GST.

Proof. Assume that block b is proposed by validator vi. As block
b is AAt , an honest validator v j receives b and votes for b in
slot t. According to the protocol, v j forwards its attestation att =
(ATTEST, t,vi,H(b),H(s),H(c),b. f i) to all validators, where s and t
are two checkpoints, and b. f i is the forwarding information for block
b. After reaching GST, all honest validators receive att. The forward-
ing info b. f i is also received by all honest validators. Accordingly,
all honest validators receive b after GST.

Lemma 7. After GST, if two consecutive stable blocks are withheld
by Byzantine validators, at least one of them must have been received
by all honest validators before they are released.

Proof. The proof is similar to that of Lemma 2, by replacing
Lemma 1 with Lemma 6 in the argument.

Lemma 8. After GST, no branch can justify a new checkpoint earlier
than the longest chain of any honest validator.

Proof. The proof is similar to that of Lemma 3, by replacing
Lemma 2 with Lemma 7 in the argument.

Theorem 6 (Liveness). The length of the finalized chain eventually
grows for all honest validators.

Proof. We first show that once an honest validator proposes a block
b after GST, all honest validators will set the chain led by b as the
longest chain. Let b be proposed in slot t. The proof consists of two
parts. First, by the end of slot t, all honest validators receive b and
add b to their block tree. Second, block b is the longest chain for all
honest validators.

We begin with the first part. As the network is synchronous, let T
be the time slot t begins. By time T +∆, all honest attestors receive
b and send their attestations. By time T + 2∆, all honest aggrega-
tors receive the attestations and then aggregate the attestations. By
time T +3∆ (i.e., the end of slot t), all honest validators receive the
attestations. Accordingly, all honest validators receive block b.

We now prove the second part. Towards a contradiction, suppose
that the chain led by b is not the longest chain by all honest validators.
There are two cases: 1) there exists a longer chain c′ before slot t
ends; 2) there exists a chain c′ before slot t ends and c′ has the same
length as the chain led by b. In the first case, for c′ to be longer, its
last two blocks must have been withheld by the adversary before slot
t, a contradiction with Lemma 7. In the second case, the slot number
of block b must be larger than the leaf block of chain c′ since block
b is the latest block. Therefore, block b∗ is the output of the longest
chain of all honest validators according to our protocol (line 37 in
Figure 11). So this case is impossible.

By Lemma 8, block b is not filtered by the fork choice. Thus, all
honest validators propose blocks and attest attestations on the chain
led by b. By Theorem 1, blocks will eventually be finalized. The
finalized chain grows.



B Adversary Strategy

In this section, we provide the attack strategies of our modified ex-
ante reorg attack and staircase attack, so the mitigation provided by
Ethereum does not work anymore. We implement these strategies in
our implementation (as mentioned in Section 8).

B.1 Ex-ante Reorg Attack

The modified ex-ante reorg attack assumes that the proposers in two
consecutive slots are Byzantine validators. Block b0 is proposed by
an honest validator in slot t. The strategies are summarized below
(as illustrated in Figure 15):

(1) (slot t +1) As shown in Figure 15a, Byzantine proposer vi with-
holds its block b1. Block b1 extends block b0. All Byzantine
attestors in slot t +1 vote for b1 and withhold their attestations.

(2) (slot t + 2) As shown in Figure 15b, Byzantine proposer v j
withholds its block b2. Block b2 extends block b1. All Byzantine
attestors in slot t +2 vote for b2 and withhold their attestations.

(3) (slot t + 3) As shown in Figure 15c, after an honest validator
vl proposes its block b3, Byzantine proposers vi and v j release
blocks b1 and b2. Meanwhile, Byzantine attestors in slots t + 1
and t +2 release their withheld attestations.

After the attack is conducted, block b3 is orphaned.

b0b0

b1b1

t + 1t + 1tt t + 2t + 2 t + 3t + 3
Time

(a) Step 1: Byzantine validators withhold b1 and their attestations in
slot t +1.

b0b0

b1b1 b2b2

t + 1t + 1tt t + 2t + 2 t + 3t + 3
Time

(b) Step 2: Byzantine validators withhold b2 and their attestations in
slot t +2.

b0b0

b1b1 b2b2

t + 1t + 1tt t + 2t + 2 t + 3t + 3
Timeb3b3

(c) Step 3: Byzantine validators release all withheld messages.

Figure 15: The modified ex-ante reorg attack.

B.2 Staircase Attack
The modified staircase attack assumes that the proposers in the first
slots of two consecutive epochs are Byzantine validators. Checkpoint
cp0 is the last justified checkpoint in epoch e. The strategies are
summarized below (as illustrated in Figure 16):

(1) (epoch e+ 1) As shown in Figure 16a, Byzantine proposer vi
delays its checkpoint block cp1 for one slot. Checkpoint cp1
extends the canonical chain. All Byzantine attestors in epoch
e+1 withhold their attestations.

(2) (epoch e+2) As shown in Figure 16b, Byzantine proposer v j
delays its checkpoint block cp2 for one slot. Checkpoint cp2
extends the canonical chain. All Byzantine attestors in epoch
e+2 withhold their attestations. The last Byzantine proposer vl
(all proposers in the rest of epoch e+2 are honest) extends the
canonical chain and withholds its block b0. Block b0 includes all
attestations from Byzantine attestors in epoch e+2.

(3) (epoch e+3) As shown in Figure 16c, all Byzantine attestors
in epoch e+3 withhold their attestations. Just before the epoch
e+3 ends, Byzantine proposer vl releases its block b0.

After the attack is conducted, all blocks from honest validators in
epoch e+3 are orphaned.

cp1cp1

ee epoch e + 1e + 1

cp0cp0 Time

(a) Step 1: Byzantine validators delay checkpoint cp1 for one slot.
All Byzantine attestors in epoch e+1 withhold their attestations.

cp1cp1

ee epoch e + 1e + 1

cp2cp2cp0cp0 Time

epoch e + 2e + 2

b0b0

(b) Step 2: Byzantine validators delay checkpoint cp2 for one slot
and withhold their attestations in epoch e+ 2. The attestations are
included in block b0. Block b0 is withheld by Byzantine validators.

cp1cp1

ee epoch e + 1e + 1

cp2cp2cp0cp0
Time

epoch e + 2e + 2 e + 3e + 3

b0b0b0b0

(c) Step 3: Byzantine validators withhold their attestations in epoch
e+3. Block b0 is released at the end of epoch e+3.

Figure 16: The modified staircase attack.
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