EIP-2718: Typed Transaction Envelope Source

AuthorMicah Zoltu
TypeStandards Track

Simple Summary

Defines a new transaction type that is an envelope for future transaction types.


TransactionType || TransactionPayload is a valid transaction and TransactionType || ReceiptPayload is a valid transaction receipt where TransactionType identifies the format of the transaction and *Payload is the transaction/receipt contents, which are defined in future EIPs.


In the past, when we have wanted to add new transaction types we have had to ensure they were backward compatible with all other transactions, meaning that you could differentiate them based only on the encoded payload, and it was not possible to have a transaction that matched both types. This was seen in EIP-155 where the new value was bit-packed into one of the encoded fields. There are multiple proposals in discussion that define new transaction types such as one that allows EOA accounts to execute code directly within their context, one that enables someone besides msg.sender to pay for gas, and proposals related to layer 1 multi-sig transactions. These all need to be defined in a way that is mutually compatible, which quickly becomes burdensome to EIP authors and to clients who now have to follow complex rules for differentiating transaction type.

By introducing an envolope transaction type, we only need to ensure backward compatibility with existing transactions and from then on we just need to solve the much simpler problem of ensuring there is no numbering conflict between TransactionTypes.



  • || is the byte/byte-array concatenation operator.


As of FORK_BLOCK_NUMBER, the transaction root in the block header MUST be the root hash of patriciaTrie(rlp(Index) => Transaction) where:

  • Index is the index in the block of this transaction
  • Transaction is either TransactionType || TransactionPayload or LegacyTransaction
  • TransactionType is a positive unsigned 8-bit number between 0 and 0x7f that represents the type of the transcation
  • TransactionPayload is an opaque byte array whose interpretation is dependent on the TransactionType and defined in future EIPs
  • LegacyTransaction is rlp([nonce, gasPrice, gasLimit, to, value, data, v, r, s])

All signatures for future transaction types SHOULD include the TransactionType as the first byte of the signed data. This makes it so we do not have to worry about signatures for one transaction type being used as signatures for a different transaction type.


As of FORK_BLOCK_NUMBER, the receipt root in the block header MUST be the root hash of patriciaTrie(rlp(Index) => Receipt) where:

  • Index is the index in the block of the transaction this receipt is for
  • Receipt is either TransactionType || ReceiptPayload or LegacyReceipt
  • TransactionType is a positive unsigned 8-bit number between 0 and 0x7f that represents the type of the transcation
  • ReceiptPayload is an opaque byte array whose interpretation is dependent on the TransactionType and defined in future EIPs
  • LegacyReceipt is rlp([status, cumulativeGasUsed, logsBloom, logs])

The TransactionType of the receipt MUST match the TransactionType of the transaction with a matching Index.


TransactionType only goes up to 0x7f

For the forseable future, 0x7f is plenty and it leaves open a number of options for extending the range such as using the high bit as a continuation bit. This also prevents us from colliding with legacy transaction types, which always start with a byte >= 0xc0.

SHOULD instead of MUST for the TransactionType being first byte of signed data

While it is strongly recommended that all future transactions sign the first byte to ensure that there is no problem with signature reuse, the authors acknowledge that this may not always make sense or be possible. One example where this isn’t possible is wrapped legacy transactions that are signature compatible with the legacy signing scheme. Another potential situation is one where transactions don’t have a signature in the traditional sense and instead have some other mechanism for determining validity.

TransactionType selection algorithm

There was discussion about defining the TransactionType identifier assignment/selection algorithm in this standard. While it would be nice to have a standardized mechanism for assignment, at the time of writing of this standard there is not a strong need for it so it was deemed out of scope. A future EIP may introduce a standard for TransactionType identifier assignment if it is deemed necessary.

Opaque byte array rather than an RLP array

By having the second byte on be opaque bytes, rather than an RLP (or other encoding) list, we can support different encoding formats for the transaction payload in the future such as SSZ, LEB128, or a fixed width format.


There was discussion about having ORIGIN and CALLER opcodes become dependent on the transaction type, so that each transaction type could define what those opcodes returned. However, there is a desire to make transaction type opaque to the contracts to discourage contracts treating different different types of transactions differently and there also were concerns over backward compatibility with existing contracts which make assumptions about ORIGIN and CALLER opcodes. Going forward, we will assume that all transaction types will have an address that reasonably represents a CALLER of the first EVM frame and ORIGIN will be the same address in all cases. If a transaction type needs to supply additional information to contracts, they will need a new opcode.

Backwards Compatibility

Clients can differentiate between the legacy transactions and typed transactions by looking at the first byte. If it starts with a value in the range [0, 0x7f] then it is a new transaction type, if it starts with a value in the range [0xc0, 0xfe] then it is a legacy transaction type. 0xff is not realistic for an RLP encoded transaction, so it is reserved for future use as an extension sentinel value.

Security Considerations

When designing a new 2718 transaction type, it is STRONGLY recommended to include the transaction type as the first byte of the signed payload. If you fail to do this, it is possible that your transaction may be signature compatible with transactions of another type which can introduce security vulnerabilities for users.

Copyright and related rights waived via CC0.


Please cite this document as:

Micah Zoltu, "EIP-2718: Typed Transaction Envelope," Ethereum Improvement Proposals, no. 2718, June 2020. [Online serial]. Available: https://eips.ethereum.org/EIPS/eip-2718.